sunpongber

利用GPU训练

有两种GPU训练的方式

方式1:
网络模型
损失函数
数据(输入,标注)
.cuda()

if torch.cuda.is_available():
    pongber = pongber.cuda()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
if torch.cuda.is_available():
    imgs = imgs.cuda()
    targets = targets.cuda()

加上if torch.cuda.is_available():这个判断,这个程序无论在CPU上还是在GPU上都可以跑,优先在GPU上跑

import torch
import torchvision
from numpy.ma.core import argmax
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

# length 长度 查看数据集有多少
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data.size=10训练数据集的长度为10
print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化
print("测试数据集的长度为:{}".format(test_data_size)) # 字符串格式化

print("训练数据集的个数为%d,测试数据集的个数为%d" %(train_data_size, test_data_size))

# 利用Dataloader来加载数据集
train_dataLoader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class Pongber(nn.Module):
    def __init__(self):
        super(Pongber, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)

        return x

# 创建网络模型
pongber = Pongber()
if torch.cuda.is_available():
    pongber = pongber.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 0.01
# 1e-2  1e-2 = 1×(10)^(-2) = 1/100 = 0.01
# learning_rate = 1e-2
optimizer = torch.optim.SGD(pongber.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter(log_dir="logs_train")

# epoch = 10i 从0跑到9
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    pongber.train(mode=True)
    for data in train_dataLoader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = pongber(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step = total_train_step + 1
        # print("训练次数:{}, Loss:{}".format(total_train_step, loss))
        if total_train_step % 100 == 0: # 每100次打印记录避免一些无用的信息
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 加上item就会把它转换成一个真实的数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    pongber.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad(): # 没有梯度保证不进行调优
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = pongber(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(pongber, "P28_train_gpu_1/pongber_{}.pth".format(i+1))
    # torch.save(pongber.state_dict(), "pongber_{}.pth".format(i+1))
    print("第{}轮训练模型已经保存".format(i+1))

writer.close()

比较一下GPU和CPU训练时间差异
start_time = time.time()
end_time = time.time()
print(end_time - start_time)

训练过程中,在终端输入nvidia-smi,会输出一些GPU的信息

GPU版本

import torch
import torchvision
from numpy.ma.core import argmax
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

# length 长度 查看数据集有多少
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data.size=10训练数据集的长度为10
print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化
print("测试数据集的长度为:{}".format(test_data_size)) # 字符串格式化

print("训练数据集的个数为%d,测试数据集的个数为%d" %(train_data_size, test_data_size))

# 利用Dataloader来加载数据集
train_dataLoader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class Pongber(nn.Module):
    def __init__(self):
        super(Pongber, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)

        return x

# 创建网络模型
pongber = Pongber()
if torch.cuda.is_available():
    pongber = pongber.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 0.01
# 1e-2  1e-2 = 1×(10)^(-2) = 1/100 = 0.01
# learning_rate = 1e-2
optimizer = torch.optim.SGD(pongber.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter(log_dir="logs_train")
start_time = time.time()

# epoch = 10i 从0跑到9
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    pongber.train(mode=True)
    for data in train_dataLoader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = pongber(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step = total_train_step + 1
        # print("训练次数:{}, Loss:{}".format(total_train_step, loss))
        if total_train_step % 100 == 0: # 每100次打印记录避免一些无用的信息
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 加上item就会把它转换成一个真实的数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    pongber.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad(): # 没有梯度保证不进行调优
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = pongber(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(pongber, "P28_train_gpu_1/pongber_{}.pth".format(i+1))
    # torch.save(pongber.state_dict(), "pongber_{}.pth".format(i+1))
    print("第{}轮训练模型已经保存".format(i+1))

writer.close()

CPU版本

import torch
import torchvision
from numpy.ma.core import argmax
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

# length 长度 查看数据集有多少
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data.size=10训练数据集的长度为10
print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化
print("测试数据集的长度为:{}".format(test_data_size)) # 字符串格式化

print("训练数据集的个数为%d,测试数据集的个数为%d" %(train_data_size, test_data_size))

# 利用Dataloader来加载数据集
train_dataLoader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class Pongber(nn.Module):
    def __init__(self):
        super(Pongber, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)

        return x

# 创建网络模型
pongber = Pongber()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 0.01
# 1e-2  1e-2 = 1×(10)^(-2) = 1/100 = 0.01
# learning_rate = 1e-2
optimizer = torch.optim.SGD(pongber.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter(log_dir="logs_train")
start_time = time.time()

# epoch = 10i 从0跑到9
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    pongber.train(mode=True)
    for data in train_dataLoader:
        imgs, targets = data
        outputs = pongber(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step = total_train_step + 1
        # print("训练次数:{}, Loss:{}".format(total_train_step, loss))
        if total_train_step % 100 == 0: # 每100次打印记录避免一些无用的信息
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 加上item就会把它转换成一个真实的数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    pongber.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad(): # 没有梯度保证不进行调优
        for data in test_dataloader:
            imgs, targets = data
            outputs = pongber(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(pongber, "P28_train_cpu_2/pongber_{}.pth".format(i+1))
    # torch.save(pongber.state_dict(), "pongber_{}.pth".format(i+1))
    print("第{}轮训练模型已经保存".format(i+1))

writer.close()

Google Colab

新建笔记本 -> 修改 -> 笔记本设置 -> T4 GPU ->保存

即可正常使用GPU训练

会发现它速度很快

我们想看一下它的配置,因为以上运行的都是Python语言,那如何运行在terminal上的运行的呢?
加一个感叹号,!nvidia-smi

Wed Jun  4 06:52:29 2025       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15              Driver Version: 550.54.15      CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  Tesla T4                       Off |   00000000:00:04.0 Off |                    0 |
| N/A   59C    P0             29W /   70W |     244MiB /  15360MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+

方式2:
.to(device)
device = torch.device("cpu")
torch.device("cuda")
torch.device("cuda:0") # 电脑上有一张显卡的话和上边的写法没有区别 torch.device("cuda:1") # 电脑上有多个显卡,指定第2张显卡

import torch
import torchvision
from numpy.ma.core import argmax
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# 定义训练的设备
# device = torch.device("cpu")
device = torch.device("cuda:0")

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)

test_data = torchvision.datasets.CIFAR10(root="P27_train/dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

# length 长度 查看数据集有多少
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data.size=10训练数据集的长度为10
print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化
print("测试数据集的长度为:{}".format(test_data_size)) # 字符串格式化

print("训练数据集的个数为%d,测试数据集的个数为%d" %(train_data_size, test_data_size))

# 利用Dataloader来加载数据集
train_dataLoader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 搭建神经网络
class Pongber(nn.Module):
    def __init__(self):
        super(Pongber, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)

        return x

# 创建网络模型
pongber = Pongber()
pongber = pongber.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 优化器
learning_rate = 0.01
# 1e-2  1e-2 = 1×(10)^(-2) = 1/100 = 0.01
# learning_rate = 1e-2
optimizer = torch.optim.SGD(pongber.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter(log_dir="logs_train")
start_time = time.time()

# epoch = 10i 从0跑到9
for i in range(epoch):
    print("------第{}轮训练开始------".format(i+1))

    # 训练步骤开始
    pongber.train(mode=True)
    for data in train_dataLoader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = pongber(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step = total_train_step + 1
        # print("训练次数:{}, Loss:{}".format(total_train_step, loss))
        if total_train_step % 100 == 0: # 每100次打印记录避免一些无用的信息
            end_time = time.time()
            print(end_time - start_time)
            print("训练次数:{}, Loss:{}".format(total_train_step, loss.item())) # 加上item就会把它转换成一个真实的数字
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    pongber.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad(): # 没有梯度保证不进行调优
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = pongber(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(pongber, "P28_train_gpu_1/pongber_{}.pth".format(i+1))
    # torch.save(pongber.state_dict(), "pongber_{}.pth".format(i+1))
    print("第{}轮训练模型已经保存".format(i+1))

writer.close()

这种方式是我们更加常用的方式,还有一些细节

第一个细节就是,对于这种网络模型不需要给它另外赋值
pongber = pongber.to(device)可以写成pongber.to(device)
pongber = pongber.cuda()也是可以写成pongber.cuda()
包括损失函数,只有数据、图片、标注需要转移之后再重新赋值给这个变量,但是为了方便记忆,赋值过去没有什么问题,看到别人代码这样写,不用去怀疑它有错

另外一个细节就是device = torch.device("cuda")device = torch.device("cuda:0")对于单显卡没有区别
另外一种device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),这个是一个语法的简写,cuda可用就使用gpu,不可用就使用cpu

原始资料地址:
利用GPU训练(一)
利用GPU训练(二)
如有侵权联系删除 仅供学习交流使用